Stay current on the latest from America Makes.*
*Submission is for announcements only and does not include the bi-weekly members-only newsletter, AM Digest.
Test coupons were fabricated with three kinds of build functions using the Fortus 400mc machine: solid-build, sparse-build, and sparse-build & double density. Mechanical properties were measured from room temperature and elevated temperature compression and flexure tests. Good agreement was observed between these experimental results and the finite element predictions of these mechanical properties.
This project seeks to determine the feasibility of utilizing sparse-build FDM tooling technology for use in vacuum assisted resin transfer molding (VARTM) and hydroforming to produce rapid tooling while reducing the amount of material required.
Limited data is available on the performance of tooling components for fused deposition modeling (FDM) solid-build (with near full density), and little data is available for sparsebuild, especially for high-performance thermoplastics such as ULTEM 9085. Data on FDM tooling components made
from ULTEM material for use in high-temperature composite manufacturing and hydroforming processes is extremely limited. Similarly there is little knowledge existing regarding the design of sparse-build FDM tools that could reduce the amount of material while maintaining strength to prevent failure and part deformation.
FDM is a proven technology in additive manufacturing that holds great promise for fabricating tooling components used in composites manufacturing and sheet metal forming. This study was aimed at producing rapid tooling while reducing the amount of material. The objective of this project was to
determine the feasibility of utilizing sparse-build FDM tooling technology for use in vacuum assisted resin transfer molding (VARTM) and hydroforming.
The project team investigated the manufacturability of various sparse-build ULTEM coupons with different build parameters using the Fortus 400mc machine to examine how the mechanical properties, including the strength and modulus, are affected by the build parameters. Finite element models for predicting the mechanical properties of 3D parts of any shapes and internal structures were developed and validated. Finally, the feasibility of fabricating solid-build and sparse-build molds/dies by the FDM process and using the fabricated tools for VARTM and hydroforming was examined. The specific project tasks included: